
Back End
Basic training
Low Code Studio

How to use this tutorial ?
Welcome to your first journey
with Convertigo Low Code Studio.
Let’s explore its many features.

Concepts & Definitions
Convertigo uses many concepts
you may not be familiar with.
Find answers with this icon.

Practice time

You prefer to skip the concepts
and start by practice.
Go straight to this icon.

> Full Stack

> Low Code

> Open Source

> Application Development Platform

What is
Convertigo
Low code Platform ?

What
can you do
with

Convertigo
Low code
Studio ?

Connect to back end systems
with Connectors

Define backend flows and business logic
with Sequences

Create web and mobile user interfaces
with Pages and UI Components

Create iOS, Android, Progressive Web Apps
and Web applications from the same project

Exchange data with the backend
using Transactions

Define and execute Test cases

Share your projects with Git versioning

Table of Contents
1 - INTRODUCTION
Overview of the studio.

3 - WEB SERVICES CONNECTORS & TRANSACTIONS
How to consume a Rest API.

4 - SEQUENCES
How to create a flow of actions.

5 - JAVASCRIPT SCOPE
How to handle JavaScript in the studio.

2 - GETTING STARTED
How to install and configure the studio.

8 - TEST PLATFORM
How to test the backend.

7 - COLLABORATION WITH GIT
How to share your projects with Git Versioning.

9 - URL MAPPER
How to expose an API REST.

10 - NOCODE DATABASE
How to use the NoCode Database.

11 - LOGS
How to manage logs in the studio.

APPENDIX

6 - ERROR MANAGEMENT
How to handle errors in the studio.

12 - AUTHENTICATION
How to manage authentication in the studio.

1 - Introduction
Overview of the studio.

 Technical knowledge

 Global architecture

 Convertigo Server

 Objects in Convertigo

 Back-end Objects

 Studio Interface

 Panels & Views

1.2

1.1

1.3

1.4

1.5

1.6

1.7

1.1 Technical knowledge

The following concepts are necessary for mastering the studio.

DATABASES

SQL basics

NoSQL basics

ALGORITHMS

Pseudocode basics

Loops, Conditional

statements...

WEB TECHNOLOGIES

XML and XPath

JavaScript & JSON

HTTP requests

REST API

1.2 Global architecture

Runs the back-end of the application

Handles data in a NoSQL database

Provides connectors to many data providers
(SQL, Web services,
Legacy apps running on mainframes...)

Runs in Docker container platforms
as a Docker Image
(Cloud providers, Kubernetes on premises...)

Can be used to deploy as many apps as wanted

1.3 Convertigo Server

1.4 Objects in Convertigo
In Convertigo, Objects refer to structured components

that encapsulate data, functions, and properties.

Objects are used to represent and manipulate various elements

in Convertigo projects.

The objects are available in the Palette view.

A Convertigo project is organized in a treeview.

where you drop objects dragged from the palette.

Data Source Connector SequenceTransaction

Ecccc Connects
to back end systems

Defines backend flows
and business logic

Exchan ges data
with the backend

In a Convertigo project, back-end objects handle the back end processing.

There are 3 main back-end objects : Connector, Transaction, and Sequence.

Sequences interact with Connectors and Transactions

to read and write data to Databases, WebServices or Third party applications.

1.5 Back-end Objects

LOGS & GIT PANEL

EDITORS PANELSOURCES & DEBUG PANEL

PROPERTIES PANEL

PROJECTS PANEL

PROJECTS

PROJECT EXPLORER

PROJECTS PANEL

PROPERTIES

PROPERTIES PANEL

PALETTE

SOURCE PICKER

REFERENCES

MOBILE DEBUG

SOURCES & DEBUG PANEL

ENGINE LOG

CONSOLE

SCHEMA

GIT REPOSITORIES

GIT STAGING

LOGS & GIT PANEL

1.6 Studio Interface
The studio interface is divided in 5 main panels. Each one contains several views.

VISUAL APP VIEWER

CODE EDITORS

CONNECTORS
& SEQUENCES
RESPONSES

EDITORS PANEL

1.6 Studio Interface

The way views are organized is called a perspective.

Each view can be moved in other panels.

You can return to the original presentation or perspective

 by clicking on Window, then selecting Perspective>, then selecting Reset Perspective.

1.7 Panels & Views

Projects Panel

PROJECTS

Displays the projects in current workspace

and the objects that compose them.

PROJECT EXPLORER

Displays the projects as files representing

project assets, projects definitions as yaml

(for advanced users only)

PROPERTIES

Displays the properties of the object selected

in Projects view.

Properties Panel

PALETTE

Displays all Convertigo backend and frontend

objects.

MOBILE DEBUG

Displays the debugger for the front end part.

SOURCE PICKER

Displays the data sources for data binding

of the selected sequence step.

REFERENCES

Displays inside and outside project references

of the object selected in the Projects view.

Sources & Debug Panel

1.7 Panels & Views

ENGINE LOG

Displays Convertigo engine execution traces.

CONSOLE

Displays the engine execution traces as text.

SCHEMA

Displays the XSD schema used and/or

generated by the project (input and output).

Logs & Git Panel

1.7 Panels & Views

GIT REPOSITORIES

Displays the Git Repositories of the projects

in your workspace.

GIT STAGING

Displays the files modified since the last commit

and Git management features.

Logs & Git Panel

1.7 Panels & Views

2 - Getting
started
How to install and configure the studio.

 Minimum System Requirements

 Installation

 Workspace & Convertigo archives file

 Configuration

 Create a project

 Export a project

 Import a project

2.2

2.1

2.3

2.4

2.5

2.6

2.7

2.1 Minimum system requirements

The following minimum system requirements are necessary for installing the studio.

MAC OS

Mac OS X

10.5 (Leopard)

or greater

Mac ARM

LINUX

Ubuntu

version 20.04 (LTS)

version 22.04 (LTS)

Debian version 11.0

WINDOWS

Windows 10

Windows 11

2.2 Installation

Open the package file and install the studio in a destination directory where you have the required permissions.

Go to the Get started page on https://www.convertigo.com/get-started-page.

Download the Low Code Studio package file for your operating system (Windows, Linux or Mac OS).

The installation package contains

the Eclipse-based Convertigo Studio

the embedded Convertigo Server with an Apache Tomcat application server

2.3 Workspace & Convertigo archives file

On first launch, you need to create a workspace for your projects.

A workspace is a directory where are saved

Studio configurations

Convertigo projects

Execution logs

The workspace is located outside of the installation directory

to save your data

if you need to uninstall or re-install the studio.

In Convertigo, the import/export format is .car (Convertigo archives) or .zip.

The .car is a zip file that contains all your project.

Example : A workspace with a Convertigo project

 and a .car file

Select a directory as workspaceStep 1

Accept LicenseStep 2

Complete the workspace creationStep 3

Configure proxy settings (Optional)Step 4

Register with Convertigo Cloud TrialStep 5

Welcome to Convertigo Low Code StudioStep 6

2.4 Configuration

After installation, the Studio needs to be configured on first launch.

CONFIGURATION PROCESS

This is the first time we are going to launch the studio.

Let’s start by creating a workspace for your projects.

Launch the studio

and select a folder

where your workspace will be created.

You can

select an existing folder or create one.

create as many workspaces as you want

wherever you want on your computer.

Step 1 - Select a directory as workspace

2.4 Configuration

Good practice: create your workspace in your user folder

on the same level as the Desktop and the Download folder

- BUT NOT INSIDE THEM.

In the window Personal studio Configuration,

Accept License and click on Next >.

Step 2 - Accept License

2.4 Configuration

To complete the creation of your workspace,

click on Next >

Step 3 - Complete the workspace creation

2.4 Configuration

To check the connection, click on Check connection

Step 4 - Configure proxy settings

2.4 Configuration

Optional : You can configure proxy settings

for Convertigo Studio to access the Internet

Step 5 - Register with Convertigo Cloud Trial

2.4 Configuration

Complete your registration with Convertigo Cloud Trial

by entering your email and a password, or using a Credential provider.

It will create your account on Convertigo Cloud Trial.

If you create other workspaces,

you will just need to log in to this account.

On first lauch, you will find 2 additionnal views :

Step 6 - Welcome to Convertigo Low Code Studio

2.4 Configuration

The Convertigo Startup view

with a link to Convertigo’s website

and the studio’s documentation.

The Tutorial view

featuring exercises to help you

getting started with the studio.

2.5 Create a project
There are several ways to create a project in Convertigo.

When you create a project for the first time in a new workspace,

you can :

First option :

click on Create a project

in the Project Explorer view

Second option :

click on

Start Low Code Fullstack

Web/Desktop

or Mobile app project

in the Project view

2.5 Create a project
The Create a new project windows appears. Enter a project name, then click on Finish.

The project appears in the Project view.

2.5 Create a project

Click directly on this icon.

Click on New>

then select Project.

First option :

Another way to create a project is to use the toolbar in the Project view.

Click on the arrow on the right of this icon.

A sub menu appears.

Click on Project in the menu.

Second option

2.5 Create a project
Both options open the Select a wizard window.

Select Convertigo Low Code FullStack Web/Desktop or Mobile app project

and click on Next>.

2.5 Create a project

Enter a project name, then click on Finish.

2.5 Create a project
As seen before, the project is created

and appears in the Project view.

When created,

a project has always the same structure.

2.6 Export a project
Let’s say you want to export a project:

right-click on the name of your project in the Projects view,

then click on Export.

A message in red indicates that you need

to run a watch or a production build

from the mobile editor.

Building the project

is necessary only for the frontend.

For now, we are working on the backend,

so we can ignore this message,

and click on Continue.

The Version update window appears.

2.6 Export a project

In the Export a project window,

you can change the name of the project,

and select where it is saved.

In the folder where it was saved,

the project appears as a .car file.

2.7 Import a project
Let’s say you want to import a project from a .car file

in your workspace

Click on File, then Import and the Import windows appears.

In the Import windows, click on Convertigo,

select Convertigo project,

then click on Next>.

In the Convertigo Project Import window,

click on Browse to select a file (here grid_tutorial.car)

anywhere in your computer. Then click on Next>.

2.7 Import a project

You can rename the project

or keep the .default file name (.car file name).

Then click on Finish. In the Projects view, the project appears.

2.7 Import a project

 Presentation of the API TMDB

 HTTP connectors & JSON HTTP transactions

 Create an HTTP connector

 Configure the HTTP connector

 Create a transaction

 Add a token

 Edit the request path

 Test the request

3.2

3.1

3.3

3.4

3.5

3.6

3.7

3 - Web services
Connectors &
Transactions
How to consume a rest API.

3.8

The Movie Database (TMDb) API provides access to a vast database of information

related to movies and television shows.

It is commonly used by developers to integrate movie-related data

into their applications, websites, and services

3.1 Presentation of the API TMDB

To go to the Getting started page of the API,

paste the following link in your browser:

https://developer.themoviedb.org/reference/intro/getting-started

3.1 Presentation of the API TMDB
In the API TMDB documentation, a lot of different requests are available.

Let’s go to the Search Movie page (https://developer.themoviedb.org/reference/search-movie).

3.1 Presentation of the API TMDB
All the informations you need to write a Search Movie HTTP REQUEST

are present on the Search Movie page.

GET HTTP Request url to search a movie

Required and Optional Query params.

Expected Response code

3.1 Presentation of the API TMDB
To use the API TMDB, it is necessary to create an account.

Once registered, you will have an API Key or personnal Access Token.

It will be used in the request Header as Authorization param.

The personnal access token appears automatically

when you are logged in.

3.1 Presentation of the API TMDB

Change the Language to HTTP to see the request as HTTP

Request url by default

GET /3/search/movie?include_adult=false&language=en-US&page=1

GET /3/search/movie?

query=avatar&include_adult=false&language=en-US&page=1

When you add a query param,

the request url changes to include it.

There are different connectors and transactions in Convertigo,

used for different data providers

(SQL, Web services, Legacy apps running on mainframes...).

3.2 HTTP connectors & JSON HTTP transactions

For a REST API,

you use the HTTP connector.

It allows Convertigo to connect and communicate with HTTP servers.

It is used to consume REST and SOAP web services,

and retrieve data using the HTTP protocol.

To consume a JSON web service,

you use a JSON HTTP transaction.

It performs the conversion of JSON data from the web service

into XML transaction output.

3.3 Create an HTTP connector
To connect to a REST API,

you need to create an HTTP_connector in the Connectors folder.

You can then rename the connector

by right-clicking on it.

First option:

Drag and drop it from the palette into the folder.

3.3 Create an HTTP connector
Second option:

Right-click on the Connectors folder,

then select New and choose Connector.

In the Create a new object window,

select HTTP connector and then click on Next>.

3.3 Create an HTTP connector

Choose a name for the connector, and click on Finish.

The new connector is created in the Connectors folder.

3.4 Configure the HTTP connector

In the Properties window,

you will find the default properties of the connector.

For https requests

IsHTTPS : true

Port : 443

For http requests

IsHTTPS : false

Port : 80

Root path : / (default path)

Server : => enter a server name

3.4 Configure the HTTP connector
Now, we need to configure the connector

with the informations found in the TMDB API documentation.

As a result, the Connector configuration is

IsHTTPS : true

Port : 443

Root path : /3/

Server : api.themoviedb.org

In the TMDB API documentation, we can see that:

the request is https

the request has a root path : /3/

 (version 3 of the API)

the domain name is api.themoviedb.org

3.5 Create a transaction

Rename the transaction

to SearchMoviesByTitle.

First option : Drag and drop a JSON HTTP transaction from the palette

into the Connectors folder.

3.5 Create a transaction
Right-click on the transaction, and select

Add variables for dynamic properties.
In the Parameters available window,

click on Add Custom Header to add the Authorization header

(which will allow sending the access token),

The Authorization header will

appear in the folder Variables

of the transaction

The Parameters available window appears.

Then click on Apply.

3.5 Create a transaction
Second Option :

Right-click on the connector,

then select New >, then select Transaction.

In the Create a new object window,

choose JSON HTTP transaction,

then click on Next >.

3.5 Create a transaction

Then, follow the same steps as in the first option.

Rename the transaction with the name of the request.

3.6 Add a token

To open the web administration console,

click on Convertigo,

then select Open web administration console.

3.6 Add a token
In the web administration console,

click on the icon PROJECTS to view the projects currently opened in the studio workspace.

3.6 Add a token

Validating the value will open the Undefined Global Symbols window.

Click on Create ‘accessToken.secret’ symbol.

As Default value, enter Bearer ${accessToken.secret}.
Let’s have a look on the properties

of the variable __header_Authorization.

3.6 Add a token
In the web administration console,

click on Symbols to access the Global symbols.

Click on Edit to open the Edit symbol window.

3.6 Add a token
In the Edit symbol window, change the accessToken.secret value.

In the Information window,

a message confirms the changes

in the accessToken.secret value.

3.6 Add a token
In the studio, the value of the symbol appears in clear

in the Properties of __header_Authorization and in the treeview’s variable _header_Authorization.

For security purposes,

the value of the symbol MUST BE HIDDEN.

3.6 Add a token

To hide the value of the symbol,

we need to change the Visibility property.

Click on the icon

at the end of

the Visibility property line.

The Visibility windows appears,

click on Mask value in all, then click on OK.

The value of __header_Authorization is hidden.

In Properties And in the variables folder

3.7 Edit the request path
In the Properties of the transaction,

edit the Sub path to include the request path:

search/movie?query={movieTitle}&include_adult=false&language=en-US&page=1 (as seen in the TMDB API doc)

This automatically adds the variable

to the Variables folder.

To add a variable part, enclose it in curly braces within the path

(in our case, {movieTitle}).

3.8 Test the request
To test the request, you need to create a test case.

Right-click on the transaction,

Select New >,

then click on Test Case.

In the Create a new object window,

select Test Case

and click Next.

3.8 Test the request
Then, enter a name for the test case,

and click Finish.

The test case is created in a Test Cases folder.

3.8 Test the request
Select the variable movieTitle of the test case.

When we edit the Default value

of the variable in properties

In the treeview,

the value of the variable 'movieTitle'

is automatically modified.

In the Properties, edit the Default Value

to enter a search term (in this case, 'avatar').

3.8 Test the request
To run the test,

right-click on the test case,

and click on Run.

3.8 Test the request
The API response is displayed in XML by default.

3.8 Test the request
Click on the JSON button to display the API response in JSON.

4 - Sequences
How to create a flow of actions.

 Sequences

 Steps

 XML & XPath

 Source Picker

 Create a sequence

 Call a transaction from a sequence

 Create a custom data structure

 Test the sequence

4.2

4.1

4.3

4.4

4.5

4.6

4.7

4.8

The Sequence is a very important backend object.

It is labelled as Generic Sequence in the palette.

In Convertigo Low Code Studio, Sequences are used

to design the logical flow and behavior

of the backend of your application

by specifying what actions should occur and in what order.

Sequences allows you to

create sequences of actions

define conditions and decision points

manage the order in which these actions are executed

define and manage the flow of actions

 with a series of successive steps

4.1 Sequences

Object Sequence in the palette

Sequences folder in a project

4.2 Steps
Steps are back-end objects.

A step is a fundamental building block

used to define a specific task, action, or operation

within a sequence.

For example, making an API request, showing a message,

performing data manipulation...

Steps are organized to create a sequence of actions

that the application should perform

in response to certain events or user interactions.

It allows developers to define the logic and behavior

of the application in a structured and modular manner.

Example of a steps folder in a sequence

Example of a series of steps in a sequence

4.2 Steps

Examples of Steps in the palette There are different categories of steps :

Convertigo request steps => to call a sequence or transaction

Flow Control Steps => to control the sequence of actions and

logic within a sequence

Javascript steps => to incorporate custom JavaScript code in

sequences

XML steps => to work with XML data in sequences

JSON Steps => to work with JSON data in sequences

HTTP session management => to manage user sessions in web

applications

File management steps => to handle and manipulate files on the

local system or server

Others

Categories of Steps

https://doc.convertigo.com/documentation/latest/reference-manual/convertigo-objects/sequencer/steps/convertigo-request-steps/
https://doc.convertigo.com/documentation/latest/reference-manual/convertigo-objects/sequencer/steps/convertigo-request-steps/
https://doc.convertigo.com/documentation/latest/reference-manual/convertigo-objects/sequencer/steps/javascript-steps/
https://doc.convertigo.com/documentation/latest/reference-manual/convertigo-objects/sequencer/steps/xml-steps/
https://doc.convertigo.com/documentation/latest/reference-manual/convertigo-objects/sequencer/steps/http-session-management/
https://doc.convertigo.com/documentation/latest/reference-manual/convertigo-objects/sequencer/steps/file-management-steps/
https://doc.convertigo.com/documentation/latest/reference-manual/convertigo-objects/sequencer/steps/others/

When added to a sequence, this step creates
an XML element (element node) ready to
output a JSON Array

Array - JSON step

When added to a sequence, this step creates a
JSON Object.

Object - JSON step

When added to a sequence, this step creates a
JSON string, number, boolean or null.

Field - JSON Step

4.2 Steps

Convertigo provides JSON steps to manipulate and interact with JSON data in sequences.

First, you drag-and-drop the step into a sequence

then, you drag-and-drop the data

 you want to manipulate from the Source Picker

 into the step in the sequence.

4.2 Steps
JSON Steps

In Convertigo,

the data structure is based on XML

regardless of its source.

The XML data structure follows the standard XML format.

It is organized hierarchically in a tree structure

with one root element, the document,

that is the parent of all other elements.

Each element has attributes and text content

4.3 XML & XPath

Example of XML Data structure in Convertigo

XML Data Structure

XPath is a language

used for navigating and querying XML documents

XPath provides a way

to pinpoint specific elements and data

within an XML structure

by using path expressions that define the location of nodes.

XPath expressions are used

to identify and traverse these nodes

within an XML document,

allowing for data extraction and manipulation.

Example of XML Data structure & XPath in Convertigo

4.3 XML & XPath
XPath

In XML and XPath,

Nodes are the individual components of an XML document.

There are several types of nodes :

element nodes representing XML elements

 -> marked by a green dot in the XML Data structure in Convertigo

attribute nodes representing attributes of elements

 -> marked by a red square in the XML Data structure

text nodes containing textual content within elements

 -> marked by TxT in the XML Data structure

4.3 XML & XPath

Element node

Attribute node

Text node

Nodes

4.4 Source Picker

Each transaction, sequence, and step

is a data source for the next step

has a property called “output”

emits data in the source picker

A source is defined as a reference on a step

previously existing in the parent sequence,

associated with an XPath applied on the step’s result DOM.

At runtime, the XPath is applied on the step’s current execution result XML

and extracts a list of XML nodes resulting from this execution.

Sources

4.4 Source Picker

Each transaction, sequence, and step

is a data source for the next step

emits data in the source picker

The source picker

displays the structure of the data

 emitted by a step.

allows you to select the XPath without typing it

 by dragging and dropping the node

 directly into a step.

The XPath is used as data path for accessing data.

Example : step “movie”

in sequence Data structure of step “movie”

 in source picker

4.4 Source Picker

Each transaction, sequence, and step

has a property called “output”

The Output property defines whether the XML generated by this step

should be appended to the resulting XML.

Set this property to true to add the step’s resulting XML to the sequence’s output XML

 (default value for steps generating XML).

Set this property to false to prevent the steps’s XML result to appear in the sequence’s output XML.

 Setting this property to false does not prevent the step’s generated XML

 from being used as a source by other steps.

Output Property

4.4 Source Picker

To handle the data emitted by a step,

there are 2 options :

Output Property

First option : If you need the whole data emitted by a step

 Put 'output’ on ‘true’1.

 The step emits data in the response 2.

Second option : If you need to filter the data and keep only specific data

 Put 'output’ on ‘false' 1.

 The step doesn’t emit in the response but still emits in the source picker.2.

 You select the data you need in the source picker by drag-and-dropping it

in a sourceable step

3.

 The following step can connect to this source through it.4.

4.4 Source Picker

Calling a transaction brings back data

with a structure described in the source picker.

In other steps, the output structure is always the same.

In a transaction call, the output structure is unknown.

→ To discover it, you need to execute the transaction once.

→ Then retrieve the structure

 with Import data structure from current connector data..

Transaction data structure

As good practice, this should be done

when the transaction is created,

before creating the sequence.

4.5 Create a sequence
To create a sequence, you have several options.

First option:

You can drag and drop a Generic Sequence from the palette in the tree structure

and rename it.

4.5 Create a sequence
Second option:

To create a sequence,

you can right-click on the project,

select New >, then click on Sequence.

The Create a new object window appears.

In the Create a new object window,

select Generic Sequence, then click on Next >

4.5 Create a sequence
In the Create a new object window,

rename the sequence and click on Finish.

A Sequences folder and the created sequence

appear in the tree structure.

4.6 Call a transaction from a sequence

Once the sequence is created,

you need to

import the transaction in the sequence.

This creates a Steps folder where a call to the transaction appears.

Drag-and-drop the transaction in the sequence

while clicking on Option in MacOs or Control in Windows.

Import the transaction in the sequence

4.6 Call a transaction from a sequence

There are 2 cases : a transaction with or without variables.

If the transaction doesn’t need variables,

you can right-click on the source transaction

and choose Execute to generate response data.

Double-click on the Call Transaction step to display the source picker.

The schema shown in the picker

does not contain response elements,

you need to

update the transaction schema.

Update the transaction schema Reminder : This step can and usually should

be done just after creating the transaction.

4.6 Call a transaction from a sequence

In our case, we have 2 variables :

_header_Authorization which has already a value

movieTitle whose value is empty.

Executing the transaction as it is

will result in an error response.

Update the transaction schema

4.6 Call a transaction from a sequence

To get a valid response, you need to use the test case

you created before in the transaction SearchMoviesByTitle.

In this test case, the variable movieTitle has already a value.
The results are displayed in the editors panel.

Right-click on the test case.

Update the transaction schema

Choose Run to generate response data.

4.6 Call a transaction from a sequence

Right-click on the source transaction SearchMoviesByTitle

and select Update schema from current connector data.

Double-click once again on the Call Transaction Step

to display the updated transaction schema

in the Source Picker.

Update the transaction schema

Before updating the schema

After updating the schema,

an object node appears

in the source picker

4.7 Create a custom data structure
Your sequence is now calling the transaction SearchMoviesByTitle which is a JSON HTTP Transaction.

Rename it movies.

Drag the Array step from the palette and drop it

into the steps folder of your sequence

after the transaction call.

To construct our own response data structure

from the transaction’s response data, let’s use the Array Step (JSON step).

It appears as movies

in the source picker.

4.7 Create a custom data structure

In the source picker,

expand the results node.

Drag the Iterator step from the palette and drop it

into the step movies in your sequence.

Then, double-click on the transaction call

in your sequence

to open the source picker. Then drag and drop the object node directly into your iterator.

This object node provides the information you want in your iterator.

4.7 Create a custom data structure

The Object step is a container for the various elements you'll add to it.

Let’s rename it movie in the treeview.

Now, in the source picker, it appears as movie.

Drag the Object step from the palette

and drop it into the Iterator step in your sequence.

In the source picker,

it appears as object.

In our application, we only need a few of them and we’re going to select the fields that interest us.

4.7 Create a custom data structure

Let’s say I want the following fields

displayed in the front-end :

title

overview

poster_path

release_date

original_title

Drag the Field step from the palette

and drop it 5 times into the Object step movie.

In the response data from the transaction,

for each item, we receive an object movie with many fields, as shown in the source picker.

Rename the 5 fields in movie as

title, overview, poster_path,

release_date, original_title

4.7 Create a custom data structure
Click twice on the movie step to display it in the source picker.

In the source picker,

you can see that the 5 fields in movie

have been renamed as well.

The structure of each

field has been renamed

Double-click on the Iterator step

to display its data in the Source Picker

and open the object node.

4.7 Create a custom data structure
Now we want to bind these fields to the values of the fields in the iterator.

Drag and drop the TxT element corresponding to the

required information into the various steps of the element.

Choose Value each time you are prompted

to set the value property of the step.

In properties,

the value appears as binded.

4.7 Create a custom data structure

Repeat the same operation

for the 5 fields.

Now we want to import the variables of the transaction into the sequence,

Right-click on the transaction call,

and select Export variables to main sequences.

A folder Variables

has been added to the sequence.

4.8 Test the sequence
Now, let’s create a test case for the sequence

(as shown in the previous slides for the transaction SearchMoviesByTitle).

Click on the variable movieTitle in the test case.

In properties, change the Default value of movieTitle to “avatar“.

The value appears in the treeview.

4.8 Test the sequence

The response data generated by the sequence

will display only the information you requested.

Right-click on the test case,

choose Run to execute it

and generate response data.

The results are displayed in the editors panel.

 What is the JavaScript Scope ?

 Interactions with JS Scope

 Back-end Objects bound to JS Scope

 Step Sequence JS

 Step Input variables

 Modify a sequence with the JS Scope

6.2

6.1

6.3

6.4

6.5

6.6

5 - JavaScript
Scope
How to handle JavaScript in the studio.

5.1 What is the JavaScript Scope ?

By default, every execution of a transaction or a sequence has a JavaScript environment.

This is called the JavaScript Scope.

You can use JS to manipulate data in the sequence.

For example, perform calculations and data transformations...

Transaction or sequence input variables

All variables declared as input vars (input variables) of the sequence

are inserted into the global scope of the JS environment.

are automatically JavaScript variables

become global variables of the sequence.

5.2 Interactions with JS Scope

In order to manipulate data in JavaScript,

Convertigo uses backend objects as gateways between the structured context and the JS scope.

These objects

manage interactions between XML data sources and JavaScript.

are used as steps in sequences.

These objects or steps can either

transform XML data from the source defined in the Source property

into JavaScript variables in the current executed sequence JS scope.

These JS variables can be manipulated in JS.

transform JavaScript scope variables into XML data sources.

use JavaScript expressions as data sources.

4.2 Steps5.3 Back-end Objects bound to JS Scope

Steps transforming XML data sources into JavaScript variables

This step transforms a single node
from the source defined in the Source property
into a JS variable (String)

jSimpleSource - JS step

This step transforms a list of XML nodes
into a JS variable (Java NodeList object)

jSource - JS step

This step extracts a JSON typed XML structure
from the source defined in the Source property,
parses it as JSON,
and sets it as a JS variable (JS Object or JS Array).

JsonSource - JS step

4.2 Steps5.3 Back-end Objects bound to JS Scope

This step adds an XML element node
based on a JS expression to parent XML element
in the sequence XML output.

jElement - XML Step

This step adds an XML attribute node
based on a JS expression to parent XML element
in the sequence XML output.

JSON to XML - JSON step

Steps transforming JS variables into XML

5.3 Back-end Objects bound to JS Scope

Steps used to manipulate JavaScript

This step raises a Convertigo Engine exception.
It breaks the sequence execution flow,
ending the sequence just after this step.

jException - JS step

This step is based on a JavaScript condition
and contains other steps executed
only if the condition is fulfilled.

jIf - Flow control step

This step is used to write JavaScript code
which is executed in the sequence scope
(initialize variables, calculations...)

Sequence JS - JS step

This step executes a group of child steps
as the condition expression
set in the Condition property remains true.

jWhile - Flow control step

The JS Scope is useful to modify Sequences.

When you need to write code directly in JavaScript, the Sequence JS step is very helpful.

This JavaScript code will be executed in the sequence scope.

5.4 Sequence JS Step

With the Sequence JS step, you can :

initialize variables,

perform complex calculations,

access the context object to get useful properties

 (contextID, httpSession, isCacheEnabled, lockPooledContext, etc.)

use some context methods to manipulate the result XML DOM,

 encode and decode data, abort sequence...

Placed at the beginning of a Sequence,

this step allows steps ordered after

to use the Sequence input variables

as source.

5.5 Input variables Step

The step Input variables is an XML element

containing dynamically the input variables of parent Sequence.

When you add it as the first step

of the sequence,

it appears as a source

in the source picker.

5.6 Modify a sequence with the JS Scope

Exercice 1 : Change a variable name with Sequence JS

Here is our sequence SearchMoviesByTitle

Let’s say we want the name of the input variable “movieTitle”

to appear as title in our sequence.

To change the name of the input variable “movieTitle”,

we are going to use JavaScript in a Sequence JS.

5.6 Modify a sequence with the JS Scope

Exercice 1 : Change a variable name with Sequence JS

Drag the Sequence JS step

from the palette in the steps folder

after the step InputVars.

Change the variable name in the file

with JavaScript.

Rename it setMovieTitleToTitle.

Click twice on setMovieTitleToTitle

to open the file setMovieTitleToTitle.js

in the editor panel

5.6 Modify a sequence with the JS Scope

Exercice 1 : Change a variable name with Sequence JS

Rename the movieTitle variable to title

in the Variables folder of the sequence.

In the Update object references window,

select Replace in current project.

The variable appears as title in the sequence

 (Test cases, Variables folder)

5.6 Modify a sequence with the JS Scope

Exercice 1 : Change a variable name with Sequence JS

When focused on inputVars step,

the source picker shows the entry variable of the sequence as title

(not as movieTitle anymore).
Before Now

5.6 Modify a sequence with the JS Scope

Exercice 2 : Set the title to uppercase with Sequence JS

Let’s say we want a field with the title in uppercase in our JSON data.

In the movie object,

after the field steps,

we add a jSimpleSource step..

We name it jUpperCaseTitle

(for JS variables, good practice is

to add a “j” at the beginning)

5.6 Modify a sequence with the JS Scope

Exercice 2 : Set the title to uppercase with Sequence JS

The jSimpleSource step is used

to transform a single node from a source into a JS variable.

Now we want to bind it to the value of the field title in the iterator.

Double-click on the Iterator step

to display its data in the Source Picker

and open the object node.

Drag and drop

the TxT element of the title

into the jSimpleSource step.

5.6 Modify a sequence with the JS Scope

Exercice 2 : Set the title to uppercase with Sequence JS

Add a Sequence JS step

in the sequence,

after the step jUpperCaseTitle. Rename it toUpperCase.

Click twice on the step

to open toUpperCase.js

Edit the toUpperCase.js

with JS code.

5.6 Modify a sequence with the JS Scope

Exercice 2 : Set the title to uppercase with Sequence JS

Add a field step after toUpperCase

and name it upperCaseTitle.

In the Value property of upperCaseTitle,

select the JS Scope by clicking on JS.

Enter jUpperCaseTitle

to select the JS variable as value.

The value of upperCaseTitle

is now sourced on

the value of the JS variable

jUpperCaseTitle.

Let’s run the Test Case The key upperCaseTitle and the value in upperCase

appears in the response data

5.6 Modify a sequence with the JS Scope

Exercice 2 : Set the title to uppercase with Sequence JS

 Basics on Error Management

 Error Management steps

 Error node & error tag

 Using the IfExist step

 Using the Error Structure step

 Using the Return step

6.2

6.1

6.3

6.4

6.5

6.6

6 - Error
Management
How to handle errors in the studio.

During its execution, a step can fail, and an error happens.

There are two types of errors:

Functional errors

System errors

In Convertigo, to handle errors:

We don't start with "If everything is OK, then...Or else..."

 => otherwise, there would be too much depth in the tree structure.

We start with "If there is a problem, then...Or else...,"

 => It means we begin error handling before dealing with successful execution.

6.1 Basics on Error Management

After each transaction call in a sequence, we test for errors.

This step is used to exit the current sequence
in which it is positioned.

Return - Flow control step

4.2 Steps

Convertigo provides steps to handle errors in sequences.

6.2 Error Management steps

This step is used to define an IF condition
looking for node(s) on a source.
It contains other steps executed only if the source
defined through the Source property exists.

IfExist - Flow control step

This step is used
to generate an output XML structure
corresponding to an applicative error.
It doesn’t break the sequence execution flow.

Error structure - XML step

6.3 Error node & error tag

In the XML structure of a source,

there is always an error node,

so that errors can be picked or sourced

if they are present.

Let’s have a look on the XML structure

of the transaction call

in the sequence SearchMoviesByTitle.

Double click on the transaction

to display its structure

in the source picker

When a system error

or a functional error happens,

it generates an error tag

which “fills” the error node.

The error tag structure is standardized.

The error will always be in the same place

and have the same format in the sequence.

In the sequence SearchMoviesByTitle,

just after the transaction call

and before the array movies,

let’s add an IfExist step.

6.4 Using the IfExist step

Then drag the node error

of the XML structure

of the transaction call

in the step IfExist.

When there is any kind of error,

an error tag is generated within the error node.

The IfExists step checks the XPath of the transaction call

to see if there is an error tag in the XPath.

Let’s test it by adding a new test case with an error.

Our test case is created.

6.4 Using the IfExist step

The transaction needs a title to search a movie.

If we forget to add a value to the variable title, an error will be generated.

In the properties,

the Default value of variable title

is null.

A a reminder, this is the result of the sequence execution

with a test case where the title has a value and everything is OK.

6.4 Using the IfExist step

Let’s run the error test case

Without a title,

the sequence returns an empty array

The transaction returns an error,

and an error tag is generated.

6.4 Using the IfExist step

The IfExists step detects the error.

We are going to use it in combination to other steps to handle this error.

To report the error to the client, we use the Error Structure step,

In the source picker,

the XML Structure

of the Error structure step

has the same properties.

6.5 Using the Error Structure step

Let’s add an Error structure step

in the IfExist step.

This step has the properties

Code (error status code)

Message

Details

These properties can be sourced

from the original error message

returned by the API in the transaction.

Let’s run the error test case again.

The original error message

returned by the transaction is the same

The sequence returns an empty array and an error.

6.5 Using the Error Structure step

Let’s see what difference it makes to have

this Error structure step in the sequence.

Let’s customize our error message.

We can enter a error message

directly in the message properties.

When running the test case,

the message will appear in the return

of the execution of the sequence

6.5 Using the Error Structure step
By changing the properties of the Error structure step,

we can customize the error returned by the sequence.

The error message appears

in the error structure step of the sequence.

Now, let’s customize the error returned by the sequence dynamically.

by using the original error message returned by the API,

and the properties of the Error Structure step. In the source picker,

we can see the nodes code, message and details.

We are going to use these nodes

to source the properties of the Error Structure step.

6.5 Using the Error Structure step

Click twice on the transaction call

to display its XML structure in the source picker.

Do the same thing with the TxT from the message and the detail nodes

Drag the TxT from the code node

into the error structure step in the sequence. The source appears in the properties

6.5 Using the Error Structure step

When we run the test case, the error returned by the sequence

has the same code, message and details as the original error message returned by the API.

Error returned by the sequence Original error message returned by the API

6.5 Using the Error Structure step

To stop the sequence after an error,

The sequence execution is stopped

and the empty movies array disappears

from the result of the sequence.

6.6 Using the Return step

After the error structure step, the sequence didn’t stop

and the following steps were executed.

That’s why we see an empty movies array after the error.

we add a Return step

after the Error Structure step

 in the IfExist step.

7 - Collaboration
with Git
How to share your projects
with Git Versioning.

 Git basics with Convertigo

 Git Repositories View

 Git Staging View

 Compare mode

 Commit your changes

 Clone a project

7.2

7.1

7.3

7.4

7.5

7.6

In the studio interface, two views are used to manage Git in your projects.

Git Repositories

Git Staging

7.1 Git basics with Convertigo

When you create a new project, a Git Repository is automatically created.

In the Projects folder, the name of your project

is followed by the name of the branch you’re currently working on.

It provides Eclipse features

to manage your Git repositories.

7.2 Git Repositories View

In the Git Repositories View,

you can see the Git Repositories of all the projects in your workspace.

7.3 Git Staging View

In the Git Staging view, you can manage your git workflow,

and commit your changes to your local and remote directories.

The files that have been modified since the last commit are shown in Unstaged changes.

It provides Eclipse features

to manage your Git workflow.

7.4 Compare Mode
With the Compare Mode, you can display the differences with the previous commit,

and resolve conflicts when necessary.

These icons represent features allowing you to manipulate the files :

navigate to the next or previous changes, swap the views,

copy changes from one view to the other...

7.4 Compare Mode

Right-click twice on a file in the Staging view to open the compare mode.

You can see the changes

since the last commit :

Here the index view is empty

because the connector was

created after the last commit

7.5 Create a repository
When you create a new project in your workspace, a Git Repository is automatically created.

But if you import a project from a .car file, you have to create it manually.

Let’s say we want to create a Git Repository for the the project grid_tutorial

Right-click on the project grid_tutorial

in the Projects view.

Select Team > then Share Project

In the Configure Git Repository window of the Share Project Window,

click on Create to create the repository

7.5 Create a repository

In the Create a new Git Repository window,

change the repository name

(repository by default)

to RepoGridTutorial.

Then click on Finish.

In the Configure Git Repository window,

you can see the repository name and its path.

Click on Finish.

7.5 Create a repository

In the Projects view,

the repository name and the branch name

appears after the project name.

In the Git Repositories view,

the repository name, the branch name

and the path to the Git repository appears.

7.6 Commit your changes
Let’s say you have made a few changes in your project

and you want to commit them on a Git repository.

You can also Unstage them with the red line

One by One

Or All at Once

Go the Git Staging view and stage your files.

Stage your files with the green cross

One by One

Or All at Once

7.6 Commit your changes

Add a commit message

and click on Commit. Your changes have been committed to your local Git repository

In the Git Repositories view,

you can see the latest commit in the References folder.

7.6 Commit your changes

At this stage, only your local Git repository has been initialized.

Let’s add a remote repository to your project.

Create an empty remote repository in GitHub or GitLab.

Copy your repo URI to the clipboard.

Click on Push HEAD.

In the Git Staging view

7.6 Commit your changes
In the Destination Git Repository window of the Push Branch Master window,

paste the URI in the URI field.

The other fields will update automatically

Click on Preview>.

7.6 Commit your changes

Reminder : In the Authentication part of the Push Branch Master window.

User is your GitHub Username

Password is a Personal access token from GitHub

7.6 Commit your changes

The Push to branch in remote window appears.

You can change the remote branch if necessary.

Click on Preview >.

The Push to branch in remote window appears.

Click on Preview >

7.6 Commit your changes

The Push Confirmation window appears.

Click on Push

to push your project on your remote repository.

A Push Results window appears

to confirm that your project has been pushed

on your remote repository.

7.6 Commit your changes

Your project appears in your remote repository.

The Remote branch appears

in the Git Repository view.

7.7 Clone a project

Let’s say you want to clone a project in your studio.

For example, you want to use the library lib_UserManager developed by Convertigo.

It is used to include user management and authentication in a Convertigo project.

You can find the repository in GitHub :

https://github.com/convertigo/c8oprj-lib-user-manager

7.7 Clone a project
As explained in the ReadMe of lib_UserManager in GitHub,

the simplest way to clone a project is

NOT by using the Git Repositories view (more complex eclipse-based process).

by using the Convertigo project import Wizard in the Project view

 (customized process developed by Convertigo).

Copy the project url from the ReadMe of the repo in GitHub :

lib_UserManager=https://github.com/convertigo/c8oprj-lib-

user-manager/archive/8.0.X.zip

Click on the Import a project in treeview button

to open the Convertigo project import Wizard.

7.7 Clone a project

The Convertigo project import Wizard opens. Paste the project url in the Project remote URL field

and click on Finish.

Important :

Usually, when cloning a GitHub repo, you copy it from the usual repo url

and the project name is not already present in the url.

7.7 Clone a project

To find the project name of a Convertigo library,

go to the c8oProject.yaml file in GitHub.

In that case, you have to include it manually in the project name field.

The project name (lib_UserManager)

is indicated at the very beginning of the file.

7.7 Clone a project

The library is imported and appears in the Projects view.
If the cloned project has symbols,

the Undefined Global Symbol window appears.

Select Do this for all current symbols.

Click on Create ‘XXX’ symbol

(‘XXX’ depends on the symbol name).

Important :

The library lib_UserManager

uses other libraries

(as shown in References folder)

and they were imported as well.

 Access the Test platform

 Test a transaction

 Test a sequence

8.2

8.1

8.3

8 - Test platform
How to test your backend.

8.1 Access the Test platform

Convertigo provides a Test platform to test your backend and your frontend.

To access the Test platform

Open the web

administration console.
Click on

the Test platform icon.

In the web administration console

In the Test platform are displayed all the projects of your workspace.

Click on MyMoviesProject to select it.

8.1 Access the Test platform

In the MyMoviesProject page of the Test platform,

we can see all the transactions and sequences of the project.

8.1 Access the Test platform

8.2 Test a transaction

Let’s test our SearchMoviesByTitle transaction.

the test case we created in our transaction.

an editor with our transaction variables

where we can enter a movieTitle variable.
When we deploy the transaction tab, we can see 2 parts:

Let’s try the test case we created in our project

with “avatar” as value for the movieTitle variable.

Click on Execute to run the test case.

The result will be displayed in XML by default.

The result is displayed in XML.

8.2 Test a transaction

Let’s try the editor with our transaction variables

with “titanic” as value for the movieTitle variable.

Let’s change the Execution mode to Json.

The result is displayed in JSON.

Click on Execute to run the test case.

8.2 Test a transaction

Now, let’s test our SearchMoviesByTitle sequence.

8.3 Test a sequence

Here again, we can see 2 parts:

the test cases we created in our transaction.

an editor with our sequence variable

where we can enter a title variable.

The result is displayed in XML.

Let’s try the error test case we created in our project

with no value for the title variable.

The Execution mode is in XML.

Let’s change the Execution mode to Json,

and execute the test again.

The result is displayed in JSON.

Click on Execute to run the test case.

8.3 Test a sequence

Let’s try the editor with our sequence variable

with “titanic” as value for the title variable.

The result is displayed in JSON.

The Execution mode is in Json.

Click on Execute to run the test case.

8.3 Test a sequence

9 - URL mapper
How to expose an API REST. What is the URL mapper ?

 URL mapper steps

 Create an URL mapper for a transaction

 Test the URL mapper on Swagger

9.2

9.1

9.3

9.4

9.1 What is the URL mapper ?
The URL mapper is able to map RESTful urls to Convertigo requestables such as Sequences and Transactions.

This way Convertigo can expose RESTful APIs to the outside world.

You can have only one URLMapper per project,

but an URLmapper can map URLs to any otherproject deployed on the server.

Example of URL mapper structure in a Convertigo project

9.2 URL mapper steps
Convertigo provides steps to create the URL mapper.

This step defines the URL mapper to use in the project.

UrlMapper

This step defines a mapping path associated with the mapper,
the base URL structure an API user will have to use
to access this API Service.
For example: /accounts/{accountid}.

PathMapping - Mapping step

9.2 URL mapper Objects

=> HTTP GET operation

=> HTTP POSToperation

=> HTTP PUT operation

=> HTTP DELETE operation

=> HTTP HEAD operation

These steps define the HTTP operations associated with the mapping.

For a given operation on a given mapping,

you define here what should be the Requestable (Sequence or Transaction) to be executed,

and how will the variables for this requestable will be mapped.

Operations Steps

9.2 URL mapper Objects

Convertigo provides steps to define parameters associated with the operation.

Parameters Steps

This step defines a path parameter by extracting
the variable value from a segment of the URL path
between {}. ex: /accounts/{accountid}

PathParameter -
Parameters step

This step defines a header parameter by extracting
the variable value from the HTTP Header
of this parameter name.

This step defines a query parameter by extracting the
variable value from the query string.
ex: /accounts?verbose=1

HeaderParameter -
Parameters step

QueryParameter -
Parameters step

9.2 URL mapper Objects
Responses Step

This step defines an HTTP response associated with the operation.

When a service is invoked, it responds with a HTTP status code.

This mapping object will help you define status codes such as 200, 401 or any other
according to XPaths resolution done on a Convertigo Sequence response.

The Sequence response will be scanned by all the UrlMappingResponse objects defined for a given operation.
The first one having its XPath matching will generate the corresponding status code.

OperationResponse - Responses step

9.3 Create an URL mapper for a transaction
In our project, we have a SearchMoviesByTitle transaction, with a variable named movieTitle.

Let’s create an URL mapper for this transaction.

Drag and drop the UrlMapper step

from the palette in the project.

9.3 Create an URL mapper for a transaction.

Drag and drop a PathMapping step

from the palette in the UrlMapper step.
In the properties,

rename the Mapping path as /movies.

The path will appear as /movies in the url.

9.3 Create an URL mapper for a transaction.

Drag and drop a GetOperation step

from the palette

in the PathMapping /movies step. Rename the GetOperation step as GetMovies.

9.3 Create an URL mapper for a transaction.

At the end of the line

of the Target requestable property,

click on this icon.

The Source object window appears.

Select the SearchMoviesByTitle transaction.

The SearchMoviesByTitle transaction appears as value

in the Target requestable property of GetMovies.

Now, let’s select which transaction or sequence

we are going to map.

In the properties of GetMovies

9.3 Create an URL mapper for a transaction.

Drag and drop a QueryParameter step

from the palette

in the GetMovies step.

Rename the QueryParameter step as title.

In the properties of the QueryParameter,

enter movieTitle (transaction variable name)

as value of Mapped variable name.

9.4 Test the URL mapper on Swagger

Now, let’s test our URL mapper on Swagger.

To open the Swagger console in your browser.

Or open the web

administration console.

Click on the Swagger icon.

In the web administration console

Click on

Open Swagger console.

9.4 Test the URL mapper on Swagger

In the Swagger console of your browser,

we can see a GET /movies request with a title parameter.

9.4 Test the URL mapper on Swagger

Let’s test the GET /movies request

with Try it out.

Click on the Try it out button.

A title field and an Execute button appear.

9.4 Test the URL mapper on Swagger

Enter a value in the title field (here “avatar”).

Click on Execute

9.4 Test the URL mapper on Swagger

A response result of the GET /movies request appears in the Swagger

 Presenting Baserow

 Set up your Baserow account

 Create a database

 Import CRUD sequences into a project

 Add filters in a table

 Test the CRUD sequences

10 - Nocode
database
How to use the NoCode Database.

10.2

10.1

10.3

10.4

10.5

10.6

10.1 Presenting Baserow

Convertigo Low code studio integrates Baserow as no-code database.

Baserow is an open-source no-code database

that allows users

to create databases and web applications

without the need for coding.

It provides a user-friendly interface

for designing databases,

setting up tables,

and views for data entry and visualization.

10.2 Set up your Baserow account

Click on Convertigo,

then click on

Open the NoCode Databases view.

In the NoCode Databases view,

a message tells you to check your emails to create your profile

(The email you used to create your Studio account).

Let’s start by opening the No Code Database view in the studio

to set up your account.

In this email, click on accept invitation to open the account creation page.

Fill in the information

and Sign up.

Once your account is created,

a tab with the Convertigo baserow dashboard opens in your browser.

10.2 Set up your Baserow account

The same dashboard opens in the NoCode Databases view of the studio.

Click on Accept to join the Convertigo NoCode Databases project

(either in the studio or in the browser).

10.2 Set up your Baserow account

You are now ready to use your nocode database.

10.2 Set up your Baserow account

10.3 Create a database

Let’s create a new database

from the dashboard in the NoCode Databases view.

Click on Create new.

You can either

start a new database from scratch

or select a template

First option :

you click on From template,

10.3 Create a database

You will see a selection of templates organized in categories.

Let’s select a template to manage an employee list.

Click on Employee Directory in the category Human Resources

to display the Employee Directory database.

Click on Use this template.

Employee Directory has 4 tables.

10.3 Create a database

Once created,

the Employee Directory database appears

in the dashboard of the NoCode Databases view.

When you click on Employee Directory,

you can see the tables and the data of the selected table.

10.3 Create a database

The Create new database window

appears.

Second option:

you click on Database

Choose a name for the new database.

Click on Add database.

10.3 Create a database

Once created,

the MyMoviesDatabase appears

in the dashboard of the NoCode Databases view.

 Rename it as MoviesTable

MyMoviesDatabase

has a table by default

10.3 Create a database

Click on MoviesTable to display it.
MoviesTable has a few fields by default.

10.3 Create a database

Change Name to Title

Let’s create a “Title” field in MoviesTable by editing the Name field. Select Single line text

as type of data for Title field.

Click on the down arrow

to display the menu

10.3 Create a database

Now we have a Title field

in MoviesTable

Let’s do the same thing

and add a few more new fields

in MoviesTable.

Now we have 5 fields in MoviesTable:

Title, Overview, Release Date, Original title and Image url.

10.3 Create a database

You are now ready to use your nocode database.

10.4 Import CRUD sequences into a project

When you select a project and click on Import,

CRUD sequences will automatically be created from baserow definitions of the table you selected,

then imported in your project.

In the Project view,

click on MyMoviesProject to select it.

In the NoCode Databases view,

the Import button text has changed

from Import to Import into “MyMoviesProject”.

10.4 Import CRUD sequences into a project

In the NoCode Databases view,

click on Import into “MyMoviesProject”.

A window allowing you

to automatically create and import CRUD sequences

into your project appears.

Click on Select All

to select all CRUD sequences .

10.4 Import CRUD sequences into a project

10.4 Import CRUD sequences into a project

We don’t use authentication

so uncheck Authentication required.
Click on Apply

The CRUD sequences were imported

and appear in MyMoviesProject in Project view.

10.4 Import CRUD sequences into a project
If you change anything in the table,

the table definition in Baserow changes and you have to reimport the table.

For example, let’s edit the Release date field to change the type from Single line text to Date.

Click on the arrow

to open the menu

Select Date as type

and the Date format.

Then click on Save.

Click on Edit field.

The Release date field

has now a Date type.

10.4 Import CRUD sequences into a project

In the NoCode Databases view,

click on Import into “MyMoviesProject”.

Click on Select All

then click on Apply.

The new CRUD sequences were imported

and appear in MyMoviesProject in Project view.

Delete the old CRUD sequences.

10.5 Add filters in a table
Let’s say you want to add a filter on the Release Date field

to select only the movies released after a specific date.

We are in the Grille view.

To add filters, we need to add a new view.

10.5 Add filters in a table

Click on the view name (Grille, in our case)

to open the views menu.

Click on Grid

to open the

Create new grid window.

Rename the Grid as WithFilter

and click on Add grid.

Click on Filter.

Click on Add filter.

10.5 Add filters in a table
We are now in the new view WithFilter.

Select the field where you apply the filter

by changing Title into Release date.

10.5 Add filters in a table

Your filter is created in the view.

Click on the arrow

to open the list of filtering rules

available for Release Date.

Select the filtering rule

Set the date to is after date.

The last input field (where you set the date)

stays empty.

10.5 Add filters in a table

Let’s create and import the sequence

corresponding to the filter

in MyMoviesProject.

Select the sequence,

uncheck Authentication required

and click on Apply.

In the NoCode Databases view,

click on Import into “MyMoviesProject”.

10.5 Add filters in a table

The sequence corresponding to the filter

has been imported in MyMoviesProject.

In the variables folder,

we can see a variable corresponding to the filter.

10.6 Test the CRUD sequences
Let’s say we want to read data from the first row in MoviesTable.

Click on this icon in the field Title

to open the field editor

First, let’s create an entry directly in the table.

10.6 Test the CRUD sequences
You can search data in the editor available in the TMDB API Search Movie page.

https://developer.themoviedb.org/reference/search-movie

For example, you can try it with the movie ‘Gremlins’

Fill the fields in the editor.

Now, we have data in the first row in MoviesTable

10.6 Test the CRUD sequences
To read data from a row in MoviesTable, we use the sequence MyMoviesDatabaseMoviesTableRead.

The sequence has one variable : row_id

Let’s create a test case with 1 as row_id value

Run the test case

10.6 Test the CRUD sequences
The sequence returns an error: invalid token.

If we look at the Baserow_API response,

we can see that the database returns an error 401 Unauthorized.

10.6 Test the CRUD sequences

In the sequence properties,

the Authentication context required property

value is false, as expected.

Remember,

when we created and imported the CRUD sequences,

we unchecked the field uncheck Authentication required.

If we don’t need an authentication, why does the Baserow_API ask for a token ?

10.6 Test the CRUD sequences
The answer is in the Web administration console.

Let’s look at the Global symbols.

Baserow adds automatically an apikey in the symbols.

10.6 Test the CRUD sequences

Click on the Delete icon.

We need to delete this apikey.

10.6 Test the CRUD sequences

Close the No Code database view and run the test case again.

The request is authorized by Baserow
The sequence returns the data from the table.

 Engine Log view

 Basics in Log level Configuration

 Configure Log level

 Logs in the web administration console

 Log step

 Using Log step in a sequence

11.2

11.1

11.3

11.4

11.5

11.6

11 - Logs
How to manage logs in the studio.

11.1 Engine Log view

In the studio,

the logs are displayed in the Engine Log view

in the Logs & Git panel.

Click on the Clear log viewer icon

to clear the logs.

11.2 Basics in Log level Configuration

By default, the root logger is set to INFO.

The others loggers are set to WARN or INFO.

The most useful and important logs (beans, context, engine and user context)

are set to “Inherited from root logger“.

In development mode, to analyze issues in a project,

the root logger is set to DEBUG.

In Production mode, we usually set root logger to WARN.

Sometimes, other loggers (specific and not commonly used)

are lowered to WARN to gain space and speed.

11.3 Configure Log level

In the studio, you can configure the log level in differents places.

First option:

Click on Convertigo,

then select Engine Preferences

The Preferences windows

appears.

Click on the Logs tab,

to open the logs settings

By default, the root logger is set on INFO.

Click on the select button

to display the different log settings

and select DEBUG.

Click on Apply and Close.

11.3 Configure Log level

Click on the

Configure Log level icon

Second option:

In the Engine Log view in the Logs & Git panel The Engine Log settings window appears.

11.3 Configure Log level

In the Engine Log settings window,

Let’s look at the root logger.

Click on the select button

to display the different log settings.

Click on Apply.

Select DEBUG.

11.3 Configure Log level

11.4 Logs in the web administration console

You can also configure and view the logs in the web administration console.

Open the web

administration console.

Click on the Logs icon.

In the web administration console

In the Logs page of the web administration console, you can see and filter the logs.

11.4 Logs in the web administration console

Click on Log levels to display a window

where you can configure the Log levels.

11.4 Logs in the web administration console

11.5 Log step

This step outputs data in a log file.

More accurately, it outputs

a message (text string) generated from the JavaScript expression defined in Expression property

in the Convertigo logger defined in the Logger property,

for the log level defined in the Level property.

Log - Others step

11.6 Using Log step in a sequence

Let’s say we want to log the inputVars of the sequence SearchMoviesByTitle in the Engine Log.

The log step appears like this in the treeview.

In the Log step properties,

the Level is set to INFO (default)

the Logger is set to Context (default)

the Expression is yet to be defined

Drag and drop a Log step

in the sequence

11.6 Using Log step in a sequence

Let’s define the JavaScript expression.

In the Expression property,

replace //todo by ‘the title is ’ + title.

title is

the input variable

of the sequence. The log step appears like this

in the treeview.

11.6 Using Log step in a sequence

Let’s run the test case with avatar as title.

In the Engine Log,

the log the title is avatar appears in green

(lNFO level color).

12 -
Authentication
How to manage authentication
in the studio.

 Accessibility property

 Http session management steps

 Create a Login sequence

 Test the Login sequence

 Add authentication to a sequence

12.2

12.1

12.3

12.4

12.5

12.1 Accessibility property

Sequences and transactions have a property called Accessibility.

It can take the following values:

Public: The transaction/sequence is runnable from everyone and everywhere, and visible in the Test Platform.

Hidden: It is runnable but only if you know the execution URL, and not visible in the Test Platform.

Private: It is only runnable from within the Convertigo engine (Call Transaction/Call Sequence steps),

 and is not visible in the Test Platform.

 This value is used for tests, unfinished transactions/sequences or functionalities not to be exposed.

 Private transactions/sequences remain runnable in the Studio, for the developer to be able to test its developments.

Note: In the Test Platform:

The administrator user (authenticated in Administration Console or Test Platform)

 can see and run all transactions / sequences, no matter what their accessibility is.

The test user (authenticated in the Test Platform or in case of anonymous access)

 can see and run public transactions/sequences and run hidden ones if he knows their execution URL.

For a transaction,

the Accessibility property is private by default.

For a sequence,

the Accessibility property is public by default.

12.1 Accessibility property

This step allows to easily
remove a value stored in the session
using its key, i.e. the variable name.

Set authenticated user Remove authenticated user

12.2 Http session management steps

This step sets a user ID as the authenticated user ID
in the current context/session and sets
the current context/session as authenticated.

12.3 Create a Login sequence

Add a new sequence and rename it Login.

Add a jIfThenElse step in the Login sequence.

In the Condition property of the jIfThenElse step,

let’s add a condition with an email and a password.

Let’s create a basic authentication in the project. We dont’ have a database with user accounts to log in

so we will simulate a user with a fake email and password with hardcoded values.

It appears like this in the treeview.

In the Then of the jIfThenElse step,

add a Set authenticated user step.

In the User ID property of the Set authenticated user step,

enter email as value in JS.

12.3 Create a Login sequence

Add a Field step after

the Set authenticated user step

Rename it login.

In the Value property of the login field step

Enter “You’re logged !” (or any other message)

as value in text (TX)

12.3 Create a Login sequence

In the Else of the jIfThenElse step,

add a Remove authenticated user step.

In the Else of the jIfThenElse step,

after the Remove authenticated user step,

add an Error structure step.

12.3 Create a Login sequence

In the Message property,

add Problem with login as value.

In the Error structure step properties

12.3 Create a Login sequence

Let’s add email and password variables to the Login sequence.

Our Login sequence with error management

is completed

12.3 Create a Login sequence

12.4 Test the Login sequence
Now, let’s create a test case with the right email and password values.

Enter the right email and password values

in the test case corresponding variables

Run the test case.

The sequence returns the login message.

Now, let’s create a test case with the right email and a wrong password

12.4 Test the Login sequence

Run the test case.

The sequence returns an error

with the error message we indicated.

12.5 Add authentication to a sequence
Let’s say we want to add authentication to the SearchMoviesByTitle sequence.

In the sequence properties

Let’s change the value of the

Authenticated context required property

from false to true.

Run the test case.

The sequence returns an error

with an error message : Authentication required.

12.5 Add authentication to a sequence
Now, let’s run the Login sequence test case before the SearchMoviesByTitle sequence test case.

The sequence returns the login message

and we are logged in.

Run the SearchMoviesByTitle sequence

test case again.

The sequence returns data from the TMDB API.

Appendix

 Use Java classes in JS SCOPE

 Generate documentation in ReadMe fileA.2

A.1

A.1 Use Java classes in JS SCOPE
In the studio, we can use Java classes in the JS Scope (thanks to the Rhino js engine).

We can integrate calls to Java code from the studio or external libraries

into the sequence in a Sequence JS step.

Add a new sequence

and name it FormatDatesWithJava

Let’s say we want to manage dates with Java classes in our application.

We can use

the Calendar class for handling date and time in Java.

the SimpleDateFormat class to format Calendar instances in a human-readable way.

Edit the JS file as following.

A.1 Use Java classes in JS SCOPE

Add a Sequence JS step in the sequence,

and name it FormatDatesWithJava.

Click twice on the Sequence JS step

to open the JS file in the editor panel

Here, a Calendar instance is created

and The SimpleDateFormat is used to format this date

into a readable format.

In the pattern "EEEE d MMMM yyyy", we have

the day of the week (EEEE)

the day of the month (d)

the month in full (MMMM)

and the year (yyyy)

This will produce output like "Mercredi 15 février 2023".

You can adjust the pattern in SimpleDateFormat

to suit your preferred date format.

A.1 Use Java classes in JS SCOPE

Add a Field step

after the Sequence JS step.

Name it date.

in the Value property of the Field step properties,

enter formattedDate as value in JS.

A.1 Use Java classes in JS SCOPE

A.1 Use Java classes in JS SCOPE

Execute the Sequence. The sequence returns the formatted date.

A.2 Generate documentation in ReadMe file
In the studio, we can automatically generate a documentation in the ReadMe.md file.

You can edit the comment in the treeview.

Or in the comment property.

You can also click on this icon

to open the markdown file of the comment

and write a more detailled comment,

if needed.

A.2 Generate documentation in ReadMe

You can write comments on every step

in the treeview. To enable the automatic generation

of the documentation in the ReadMe.md file,

right-click on the project name in the Projects view.

Click on Always to confirm.

Select Generate readme.md

to open the Readme generation window.

A.2 Generate documentation in ReadMe
You can also use Studio Preferences to enable the automatic generation of the documentation in the ReadMe.md file.

Each time the project is saved, the file is updated.

In the Preferences window Click on Auto update Readme on save.

Click on Apply and Close.

A.2 Generate documentation in ReadMe
In the Project Explorer view,

click twice on the readme.md file to open it.

The content of the file is automatically generated

A.2 Generate documentation in ReadMe

Markdown Source viewPreview view

The ReadMe.md file is displayed in Preview by default. You can switch it to Markdown to edit it in markdown.

